Numerical analysis for a discontinuous rotation of the torus.

نویسندگان

  • H Bruin
  • A Lambert
  • G Poggiaspalla
  • S Vaienti
چکیده

In this paper, we study a class of piecewise rotations on the square. While few theoretical results are known about them, we numerically compute box-counting dimensions, correlation dimensions and complexity of the symbolic language produced by the system. Our results seem to confirm a conjecture that the fractal dimension of the exceptional set is two, as well as indicate that the dynamics on it is not ergodic. We also explore a relationship between the piecewise rotations and discretized rotations on lattices Z(2n).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Discontinuous Finite Element Analysis of Two-Dimensional Elastodynamic Problems using Complex Fourier Shape Functions

This paper reformulates a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions, called complex Fourier hereafter, for solving two-dimensional elastodynamic problems. These shape functions, which are derived from their corresponding radial basis functions, have some advantages such as the satisfaction of exponential and trigonometric function fields in comple...

متن کامل

Numerical modelling of induced rip currents by discontinuous submerged breakwaters

Submerged breakwaters are one of the shore protective structures. Any discontinuity in these breakwaters causes changes on current parameters including speed and water surface profile. In this paper, discontinuous submerged breakwaters were modelled to investigate the changes in the wave and flow pattern.To investigate the phenomenon, three models including a shore with constant slope, a shore ...

متن کامل

Elasto-plastic analysis of discontinuous medium using linearly conforming radial point interpolation method

In this paper, the linearly conforming enriched radial basis point interpolation method is implemented for the elasto-plastic analysis of discontinuous medium. The linear conformability of the method is satisfied by the application of stabilized nodal integration and the enrichment of radial basis functions is achieved by the addition of linear polynomial terms. To implement the method for the ...

متن کامل

A High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients

This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...

متن کامل

Element free Galerkin method for crack analysis of orthotropic plates

A new approach for analyzing cracked problems in 2D orthotropic materials using the well-known element free Galerkin method and orthotropic enrichment functions is proposed. The element free Galerkin method is a meshfree method which enables discontinuous problems to be modeled efficiently. In this study, element free Galerkin is extrinsically enriched by the recently developed crack-tip orthot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chaos

دوره 13 2  شماره 

صفحات  -

تاریخ انتشار 2003